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Abstract

High power rockets are essentially large unguided model rockets that can fly to altitudes

as high as 13 km and recover to earth by parachute. A rocket flight simulator can be used

to predict the flight path of the rocket during the ascent. To do this the simulator requires

certain input parameters. This paper summarizes some simple methods for estimating

these parameters from very basic information such as the geometry of the rocket and the

thrust curve. Methods for estimating the mass, centre of mass, moments of inertia, thrust

damping, centre of pressure, drag force and normal force are given in this paper. The

methodology described in this paper has been used in conjunction with a rocket flight

simulator to predict the flight path of a high power rocket. Some results are given in the

summary of the paper.

1 Introduction

Rocket flight simulators require certain input parameters that describe the properties of the

rocket for the simulator. These include dynamic parameters such as the thrust, mass and

moments of inertia of the rocket and also aerodynamic parameters such as the coefficients of

the aerodynamic forces and the location of the centre of pressure.

The parameters can be obtained in a number of different ways, for instance in the case

of the aerodynamic parameters these could be obtained through wind tunnel experiments on

the rocket or on a scale model. Alternatively they can be found by using computational fluid

dynamics to numerically integrate the viscous and pressure forces over the surface of the rocket.

While experimental and computational methods can provide accurate estimates of the pa-

rameters it is also useful to be able to estimate the parameters using simple equations derived

from theoretical relationships using some simplifying assumptions. This approach provides a

quick method for estimating parameters in applications where the most accurate estimates are

not required.

This document collates and summarizes relevant equations for estimating the dynamic and

aerodynamic input parameters from rocketry and engineering literature. In some cases equa-

tions are semi-empirical, that is they use relationships that have been fitted to data from

experiments using rockets of a standard shape. In general, these equations are only applicable
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to rockets with a conventional shape. That is an axisymmetric rocket with a single cylindrical

body, a conical, parabolic or ogive shaped nose cone and fin sets consisting of three or four

trapezoidal fins. Changes is body diameter via conical transitions are allowed.

There are also a number of simplifying assumptions that are used in the estimation of

the parameters and in the rocket simulators that use these parameters. These include the

assumption that the rocket is an axisymmetric rigid body and that the angle of attack during

the flight is always low. These and other assumptions will be discussed in more detail throughout

the paper.

The methods presented here have been used to provide estimates of input parameters for a

rocket flight simulator described in Box et al [2009], which also contains some validation data

from a test flight.

2 The Dynamic Parameters

The dynamic parameters of the rocket that need to be estimated for flight simulations are the

Thrust, mass, centre of mass, moments of inertia about the three principal axis and a thrust

damping coefficient. Because the rocket is expelling mass from the motor nozzle all of these

parameters will be time-varying until the motor burns out.

The thrust curve of the rocket motor can be measured on a test rig but in most cases

commercially sold motors will be supplied with thrust-time data from the manufacturer. If

the mass of the fuel is known then it is possible to estimate the mass curve for the motor by

assuming that the mass burned at any point in time is proportional to the impulse of the motor

up to that point (1).

δMi = −
Mf

∫ i

0

T dt

∫

∞

0

T dt

(1)

where Mf is the total mass of fuel, T is the thrust and δMi is the change in the mass of fuel

on board from ignition to time t = i. This calculation can be done numerically.

The following sections show how to estimate the centre of mass, moments of inertia and

thrust damping coefficient for a given rocket mass M , which constitutes a single point on the

mass curve. So to apply these calculations they must be repeated over the range of masses to

build up time varying curves for each of these parameters also.

2.1 Centre of Mass and Moments of Inertia

For the purposes of these calculations it is assumed that the rocket is an axisymmetric body

and the centre of mass of the rocket and it’s component parts lies on the axis of symmetry,

which is the roll axis of the rocket. We define the position of the centre of mass as a distance

Xcm along the roll axis measured from the tip of the nose cone. The position of the centre of

mass is defined using (2).

Xcm =
1

M

∫

r dm (2)
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where r is the distance of an infinitesimal “slice” of rocket with mass dm along the roll axis

and M is the total mass of the rocket.

Similarly the moment of inertia of the rocket about an axis of rotation is defined as

I =

∫

r2 dm (3)

where r is the distance of an infinitesimal volume with mass dm from the axis of rotation.

A simple approach to solving (2) and (3) is to divide the rocket up into component parts.

The parts are then assumed to have simple shapes such as tubes, cones, blocks, cylinders etc.

Small parts can be modelled as a point mass. Parts with complex shapes such as the packed

parachute can approximated by a simpler shape, in this case a cylinder with uniform density.

The following subsections describe how to calculate the centre of mass and moments of

inertia about the principle axes for some simple shapes and how to combine them together to

estimate the total centre of mass and moments of inertia for the rocket.

2.1.1 Cone

The centre of mass of a solid cone is located on the axis of symmetry two thirds of the distance

between the tip and the base.

Xcm =
2l

3
(4)

where Xcm is distance from the cone’s point to it’s centre of mass and l is the height of the

cone. The moments or inertia about the principal axes of a cone where the z axis is aligned

with the cones axis of symmetry are given by

Ixx = Iyy =
1

10
Ml2 +

3

20
Mr2 (5)

Izz =
3

10
Mr2 (6)

where M is the mass of the cone and r is the radius of the base of the cone.

2.1.2 Tube

The centre of mass of a tube is located half way along the axis of symmetry.

Xcm =
l

2
(7)

where Xcm is the distance of the centre of mass from one end of the tube and l is the length of

the tube. The moments of inertia about the tube’s principal axes, where the z axis is the axis

of symmetry are

Ixx = Iyy =
1

12
M
[

3
(

r2
1 + r2

2

)

+ l2
]

(8)

Izz =
1

2
M
(

r2
1 + r2

2

)

(9)

where M is the mass of the tube and r1 and r2 are the internal and external radii of the tube

respectively
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Block

The centre of mass of a block with sides of length X , Y and Z will be at the centre of the block

(X/2, Y/2, Z/2).

The moments of inertia about a block’s principal axis are given by

Ixx =
1

12
M(Y 2 + Z2) (10)

Iyy =
1

12
M(X2 + Z2) (11)

Izz =
1

12
M(X2 + Y 2) (12)

where M is the mass of the block.

Point Mass

Centre of mass of a point mass is it’s location. A point mass has zero moment of inertia about

it’s own centre of mass.

Total Centre of Mass and Moments of Inertia

The location of the overall centre of mass of the rocket with reference to the nose cone tip is

calculated using the following equation.

Xcm(R) =

∑

P∈R

(XP + Xcm(P ))MP

MR
(13)

where the subscript P denotes a part and R denotes the whole rocket. XP is the distance from

the nose tip to the most forward point of part P .

The overall moments of inertia are calculated using the parallel axis theorem.

IP = Icm(P ) + Mpd
2 (14)

IR =
∑

P∈R

IP (15)

where IR is the moment of inertia of the rocket about a given axis through the rocket’s centre

of mass, IP is the component of the rockets moment of inertia about the selected axis that is

due to a given part P . Icm(P ) is the moment of inertia about a parallel axis through the centre

of mass of the part P , d is the distance between the two axes and MP is the mass of the part.

Note that although a point mass has no intrinsic moment of inertia about it’s own centre

of mass it may still contribute to the moment of inertia of the rocket through the parallel axis

theorem.

2.2 Thrust Damping

The expulsion of mass from the rocket nozzle has a further effect on the rocket’s dynamics and

this is to damp angular rotations of the rocket by generating a torque in the opposite direction

4



to the rotation. This is caused by the lateral acceleration of the hot rocket gas as it travels

down the motor tube [Duncan & Ensey, 1964].

The torque due to thrust damping is given by

τda = −Ṁ(l2cn − l2cc)ω (16)

where Ṁ is the mass expulsion rate of the fuel, lcn is the distance between the centre of mass of

the rocket and the nozzle exit, lcc is the distance between the centre of mass of the rocket and

the centre of mass of the fuel and ω is the angular velocity of the rocket. The mass expulsion

rate at time t = x is dM
dt

∣

∣

t=x
and can be estimated numerically from the mass time curve.

The term Ṁ(l2cn − l2cc) is a dynamic parameter that must be passed to the simulator. We

can define this term as the trust damping coefficient (Cda).

Cda = Ṁ(l2cn − l2cc) (17)

τda = −Cdaω (18)

However it should be noted that while it is conventional to call this a coefficient it is not

dimensionless, it has the SI units kg m2

s .

3 The Aerodynamic Parameters

3.1 Force Components

V

dF

α

LF

Figure 1: Showing the vectors of drag force FD and lift force FL relative to a rocket’s apparent

velocity vector V for flight with angle of attack α.

The aerodynamic force vector on a rocket in flight is typically considered as two orthogonal

force vector components, however there are two conventions for how to orientate these com-

ponents. Figure 1 shows the first convention. Here the components of aerodynamic force are

the drag force FD and the lift force FL. These aerodynamic forces can be assumed to act on a

single point in the rocket known as the centre of pressure. The vectors of the component forces

5



V

AF

α

NF

Figure 2: Showing the vectors of axial force FA and normal force FN relative to a rocket’s roll

axis.

are defined relative to the rocket’s apparent velocity vector V . The apparent velocity is defined

as velocity of the centre of pressure of the rocket relative to the atmosphere. The direction of

the the drag force vector is exactly opposite to the direction of V .

The second convention is to orient the two orthogonal components relative to the rocket’s

roll axis as shown in Figure 2. Here the forces are referred to as the axial force FA and the

normal force FN . As with drag and lift these forces act through the centre of pressure.

The angle between the vector defined by the rocket’s roll axis and the apparent velocity

vector V is known as the angle of attack α. The direction in which lift force or the normal force

acts is orthogonal to the drag force or the axial force and in the plane defined by the roll axis

vector and the apparent velocity vector. Also in both conventions the normal force, or the lift

force goes to zero as the angle of attack α goes to zero.

The magnitude of any of these forces can be given by the following equation

Fi =
1

2
ρV 2ArCi (19)

where the subscript i is either D,L,A,N for drag, lift, axial or normal respectively. ρ is the

atmospheric density V is the rocket’s apparent velocity Ar is the reference area, which is

the cross-section area at the base of the nose cone and Ci is the relevant aerodynamic force

coefficient. The challenge is to estimate these aerodynamic coefficients.

The aerodynamic forces are complex phenomena and there are no simple analytical solutions

for the coefficients. In the incompressible flow regime the forces can be divided into pressure

force and viscous force. Pressure force arises through the stagnation of fluid on the rocket

forebody, fins, and any other protrusions, and also through a suction force created by a low

pressure region at the base of the rocket where boundary layer separation occurs. Viscous force

is due to skin friction between the rocket and the air. If the boundary layer at the rocket’s

surface is turbulent then the viscous forces will be significantly less that if it is laminar, hence

the viscous force is highly dependant on Reynolds number.
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As the rocket approaches the speed of sound a further force becomes relevant. At trans-

sonic speeds shock waves form at the nose tip and at the leading edge of the fins. At sonic

velocity these shocks are normal to the direction of motion of the rocket, and they become

oblique (decreasing in half angle) as the rocket proceeds through super-sonic speeds. Momentum

is transferred from the rocket to the surrounding air via these shock waves. This increased

component of aerodynamic force is sometimes called wave drag.

At low speed (incompressible flow) the aerodynamic coefficients are functions of the angle of

attack (α) and Reynolds number(Re). At higher speeds where the flow becomes compressible

(Ma ≥ 0.4) they are also functions of Mach number (Ma).

Ci = f(α, Re, Ma) (20)

3.2 Equations for estimating the Aerodynamic Coefficients

This section presents two separate methods from rocketry literature for estimating an aero-

dynamic coefficient using the rocket’s geometry. The first is for estimating the normal force

coefficient CN and the second is for estimating the coefficient of drag CD.

It might be considered more helpful to present two methods based on the same convention

however this is not available in the literature. It is of course possible to combine these two

methods to make estimates of either CN and CA or CD and CL. This however leaves the

problem that two separate methods published by different authors are being used to estimate

two components of what is essentially a single force, the aerodynamic force on the rocket.

Despite these misgivings, test data from real rocket flights has been shown to compare well

with flight simulation data based on this method (see Section 4).

Figure 3 shows a schematic of an example rocket shape. On this figure key dimensions that

are used to define the rocket’s geometry are labelled. This figure will be referred to throughout

the following sections.

3.2.1 Normal Force

Equations for estimating the normal force, and the location of the centre of pressure on a small

rocket have been proposed by Barrowman [1998]. The Barrowman equations are derived using

the following assumptions.

• The angle of attack of the rocket is low (α < 10◦)

• The effects of compressibility can be neglected i.e. Ma < 0.4

• Viscous forces are negligible

• Lift forces on the rocket body tube can be neglected

• The air flow over the rocket is smooth and does not change rapidly

• The rocket is thin compared to it’s length

• The nose of the rocket comes smoothly to a point
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Figure 3: Schematic of a simple rocket with showing the principle dimensions
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• The rocket is an axisymmetric rigid body

• The fins are thin flat plates

Here we will summarize the Barrowman method, a full derivation is given in Barrowman &

Barrowman [1966]. From (19) the normal force on the rocket is given by (21)

FN =
1

2
ρV 2ArCN (21)

where Ar is the cross sectional area of the rocket at the base of the nosecone. The Barrowman

method assumes incompressible flow and neglects viscous forces, therefore CN is assumed to

be a function of α only. Furthermore because a small α is assumed CN can be expressed as a

linear function of α (22).

CN = CNαα (22)

where CNα is the slope of the normal force coefficient, sometimes called the stability derivative.

CNα is calculated as the sum of the individual stability derivatives for each of the components

that makes up the rocket’s shape. These components can be either a nosecone, a finset or a

conical change in the diameter of the rocket’s body tube. The body tube itself is neglected

as a component because one of the key assumptions of the Barrowman method is that lift on

the body tube is negligible. A rocket can consist of a nosecone and any number of finsets and

conical changes in body diameter.

The total stability derivative is given by the sum of the individual stability derivatives for

each of the parts of the rocket.

CNα(R) =
∑

P∈R

CNα(P ) (23)

where P designates a rocket part and R designates the whole rocket.

The location of the rocket’s centre of pressure is also calculated is terms of the centre of

pressure of each of the individual rocket components. As with the centre of mass it is assumed

that the centre of pressure lies on the roll axis of the rocket, the position of the centre of

pressure is defined as the distance (Xcp) of the centre of pressure from the nose cone tip. Xcp

is calculated using equation (24)

Xcp(R) =

∑

P∈R

CNα(P )Xcp(P )

CNα(R)
(24)

where Xcp(P ) is the distance of the centre of pressure of component P from the tip of the

rocket’s nosecone.

The equations for calculating CNα and Xcp for nosecones, finsets and conical changes in

body diameter are given below.

Nose cone The stability derivative for a rocket’s nosecone is 2 as long as the shape of the

nosecone is either conical, ogive or parabolic.

CNα(n) = 2 (25)
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The location of the centre of pressure of the nose cone is dependent on the shape

Conical:Xcp(n) =
2

3
ln (26)

Ogive:Xcp(n) = 0.466ln (27)

Parabolic:Xcp(n) =
1

2
ln (28)

where Xcp(n) is the distance of the centre of pressure from the tip of the nose cone and ln is

the length of the nose cone.

Conical change in body diameter The stability derivative CNα and the location of the

centre of pressure Xcp for a conical change in body diameter are given by the following equations.

CNα(c) = 2

[

(

dd

dn

)2

−
(

du

dn

)2
]

(29)

Xcp(c) = Xc +
lc
3






1 +

1 − du

dd

1 −
(

du

dd

)2






(30)

where dn is the diameter of the base of the nose cone (reference diameter), du is the upstream

diameter of the conical change, dd is the downstream diameter of the conical change, lc is the

length of the conical change and Xc is the distance between the tip of the nose cone and the

most upstream point on the conical change in body diameter (figure 3).

Equation (29) will produce a negative result if the upstream diameter is larger than the

downstream diameter. This is correct as the pressure force in this case is a suction force acting

towards the direction of flow.

Fins The following equations are for the entire fin set, and are valid for configurations with

3 or 4 trapezoidal fins.

The stability derivative for a trapezoidal finset is given by the following equation

CNα(f) = Kfb

4n
(

ls
dn

)2

1 +

√

1 +
(

2lm
lr+lt

)2
(31)

where n is the number of fins, ls is the fin span, lm is the fin mid-chord, lr is the fin root-chord

and lt is the fin tip-chord (figure 3). Kfb is a coefficient that takes into account an increase in

the normal force due to interference effects between the fin and the body.

Kfb = 1 +
df

2

(ls +
df

2 )
(32)

where df is the diameter of the body tube at the fin’s location. The location of the centre of

pressure for a trapezoidal finset is given by

Xcp = Xf +
lm(lr + 2lt)

3(lr + lt)
+

1

6

[

lr + lt −
lrlt

lr + lt

]

(33)
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where Xf is the length between the nose cone tip and the point where the fin leading edge

meets the body tube.

Expanding the Valid Range of the Barrowman Equations As mentioned in the above

section the Barrowman equations are subject to some quite restrictive assumptions. At least

two of these assumptions may be broken in high powered rocket flight. The first of these is

the assumption of incompressibility as high power rockets are capable of exceeding the speed

of sound.

The second assumption is that the lift forces on the rocket body are negligible because

the angle of attack α is below 10◦. This assumption may be reasonable for most rockets but

experiments have suggested that for rockets with particularly long slender bodies, body lift may

not be negligible [Dahlquist, 1998].

Correcting for the effects of compressible flow is dealt with in section 3.2.3. Below we present

a method for estimating the lift on the rocket body.

Rocket body lift correction Rocket body lift and it’s associated effects on the position of

a rockets’ centre of pressure are neglected in the Barrowman equations. Galejs [1999] proposed

the following extension to the Barrowman equations to take body lift into account.

The coefficient of normal force due to body lift is given by equation (34).

CN(L) = K
Ap

Ar
α2 (34)

where K is a constant between 1.0 and 1.5, Ap is the planform area of the rocket (excluding

the fins) and Ar is the reference area for the rocket (cross-sectional area at the base of the nose

cone).

CN(L) is not a linear function of α as with the assumption of the Barrowman method. Galejs

defines

CNα2 = K
Ap

Ar
α (35)

which is not the slope of CN(L) but simply
CN(L)

α . CNα2 can be added to CNα in equation (23).

But this makes CNα a function of α and hence the whole rocket CN is non-linear.

The centre of pressure for the body lift force is taken to be the centre of the planform area,

The equations used to determine the centre of the planform area for the various rocket body

components are given below.

Conical Nose:Xcp(n) =
2

3
ln (36)

Ogive Nose:Xcp(n) =
5

8
ln (37)

Parabolic Nose:Xcp(n) =
3

5
ln (38)

Body section:Xcp(n) = Xb +
1

2
lb (39)

Conical transition:Xcp(n) = Xc +
l

3

[

(du + 2dd)

(du + dd)

]

(40)
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For each component CNα2 and Xcp are included in the Barrowman equations (23) and (24).

In the Galejs [1999] article results of this modelling were compared with experimental data

for variation in CP with angle of attack from Dahlquist [1998]. The comparison shows a good

agreement between experimental and modelled data for values 0◦ < α < 15◦, using K = 1.

3.2.2 Drag Force

Equations for estimating the coefficient of drag force on a rocket are provided by Mandell et al

[1973]. First we present how to calculate the drag force at zero angle of attack, then we show

how so extend this to small angles of attack using semi-empirical equations.

Zero angle of attack drag force The coefficient of zero angle of attack drag force (CD(0))

on a rocket can be estimated using the United States Air force Stability and Control Datcom

Method [Mandell et al, 1973]. This method, like the Barrowman equations, uses basic informa-

tion about the rocket geometry and assumes incompressible flow. to estimate the drag forces.

The main equations of the datcom method are summarised below; derivations of the equations

are given in Mandell et al [1973].

Body Drag The drag on the rocket forebody is estimated using equation (41)

CD(fb) =

[

1 +
60

(lTR/db)3
+ 0.0025

lb
db

] [

2.7
ln
db

+ 4
lb
db

+ 2

(

1 −
dd

db

)

lc
db

]

Cf(fb) (41)

where lTR is the total length of the rocket body, lc is the length of a boat tail (if present) - a

boat tail is a conical reduction in the body diameter at the base of the rocket (figure 3). db is

the maximum body diameter and dd is the diameter of the rocket base. Cf(fb) is the coefficient

of viscous friction on the rocket forebody (defined later in (45))

Base Drag The base drag on the rocket is the drag due to the low pressure region at the

base of the rocket that is caused by boundary layer separation. This drag is estimated using

equation (42)

CD(b) = 0.029

(

dd

db

)3

√

CD(fb)

(42)

Fin drag The fin drag on the rocket at zero angle of attack is given by equation (43).

CD(f) = 2Cf(f)

(

1 + 2
Tf

lm

)

4nAfp

πd2
f

(43)

where Cf(f) is the coefficient of viscous friction on the fins (defined later in (45)), Tf is the

fin thickness, n is the number of fins and df is the diameter of the body tube at the fin root.

Afp is defined as the fin planform area. The planform area of the exposed part of a trape-

zoidal fin is given by Afe = 1
2 (lr + lt)ls. This is known as the exposed area. For the full

planform area it is usual to assume that the fin extends to the centre line of the rocket body

i.e. Afp = Afe + 1
2df lr.
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Interference Drag The drag due to interference effects between the fins and the body is

given by equation (44)

CD(i) = 2Cf(f)

(

1 + 2
Tf

lm

)

4n(Afp − Afe)

πd2
f

(44)

Viscous Friction As discussed in section 3.1 the viscous forces on the rocket are dependent

on Reynolds number. The friction force coefficient is given by equation (45).

Cf =



















1.328
√

Re
when Re ≤ Rec

0.074

Re1/5
−

B

Re
when Re ≥ Rec

(45)

where B is given by equation (46).

B = Rec

(

0.074

Re1/5
−

1.328
√

Re

)

(46)

Reynolds number is given by

Re =
ρV L

µ
(47)

where ρ is the atmospheric density, µ is the kinematic viscosity of air, V is the apparent

velocity vector and L is the characteristic dimension. To calculate the viscous friction coefficient

of the rocket body Cf(b) the characteristic dimension is the total body length L = lTR. To

calculate the viscous friction coefficient of the rocket fins Cf(f) the characteristic dimension is

the fin mid chord L = lm. Rec is the critical Reynold number, which Mandell et al [1973] give

as 5 × 105.

Total zero angle of attack drag The total zero angle of attack drag coefficient CD(0) can

be modelled as sum of the individual drag coefficients given in equations (41) to (44)

CD(0) = CD(fb) + CD(b) + CD(f) + CD(i) (48)

Additional drag at angle of attack Mandell et al [1973] presents equations for estimating

an additional component of drag, which can be added to the zero angle of attack drag (CD(0))

in order to model the drag force at small angles of attack α. This method incorporates some

coefficients that are derived from data which comes from wind tunnel experiments on rocket

models.

As with the zero angle of attack drag force the component of alpha drag is subdivided into

drag on the rocket body CDb(α) and drag on the finset CDf(α).

The coefficient of alpha drag on the rocket body is calculated using equation (49).

CDb(α) = 2δα2 +
3.6η(1.36lTR − 0.55ln)

πdb
α3 (49)

where α is the angle of attack of the rocket and δ and η are experimentally derived coefficients.

These are obtained using experimental data from wind tunnel measurements. Figure 4 from

Mandell et al [1973] shows δ and η
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Figure 4: Graphs showing the relationship between α and the coefficients δ and η [Mandell et

al, 1973].

The coefficient of alpha drag on the rocket’s fins is calculated using

CDf(α) = α2

[

1.2
Afp4

πd2
f

+ 3.12(kfb + kbf − 1)

(

Afe4

πd2
f

)]

(50)

where Afp is the total fin planform area and Afe is the total fin exposed area. kfb and kbf are

the fin-body interference coefficient and the body-fin interference coefficient given by equations

(51) and (52).

kfb = 0.8065R2
s + 1.1553Rs (51)

kbf = 0.1935R2
s + 0.8174Rs + 1 (52)

where Rs is the fin section ratio, which is the ratio between the total span on the fins lTS (figure

3) and the diameter of the body tube where the fins are mounted df , (Rs = lTS

df
).

The complete coefficient of drag on the rocket is obtained by adding the alpha drag coeffi-

cients to the zero angle of attack drag coefficient, hence

CD = CD(0) + CDbα + CDfα (53)

Knowing estimates for the drag force coefficient CD and the normal force coefficient CN an

estimate for the axial force coefficient CA can be calculated using

CA =
CD cosα − 1

2CN sin (2α)

1 − sin2 α
(54)

This gives us two orthogonal force coefficients using the same convention (CN and CA).

3.2.3 Compressible Flow Correction

The methods described above for calculating CN and CA are only valid for incompressible flow.

In this section we show how to extend the range of these aerodynamic coefficients into the
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compressible flow regime. The Prandtl-Glauert compressibility correction can be applied to

estimate the variation in the aerodynamic force coefficient at trans-sonic speeds.

At subsonic speeds (Ma < 1) the corrected aerodynamic coefficient is given by equation

(55) [Cramer, 2002]

C′

i =
Ci√

1 − Ma2
(55)

where Ci is the aerodynamic coefficient in the incompressible regime and Ma is the free stream

Mach number.

At supersonic speeds (Ma > 1) the corrected aerodynamic coefficient is given by equation

(56).

C′

i =
Ci√

Ma2 − 1
(56)

The problem with this estimation method is that C′

i goes to infinity as Ma goes to 1, which

no longer fits experimental data. It is suggested in Ketchledge [1993] that in order to avoid this

situation, the following equation is used for 0.8 < Ma < 1.1.

C′

i =
Ci

√

1 − (0.8)2
(57)

4 Summary

In this document it has been shown how to calculate a number of dynamic and aerodynamic

parameters for rocket flight simulators. The parameters which have been dealt with are sum-

marized in Table 1. As the table shows, many of the parameters can be functions of a variable

in the rocket simulation such as time t, Reynolds number Re or angle of attack α. There are

different ways that these dependencies can be dealt with, the parameters can be calculated on

the fly for the simulator, or alternatively pre-calculated at discrete intervals and stored in a

database to be accessed by the simulator and interpolated as required.

Symbol Function of Description

T t Thrust

M t Mass

Xcm t Distance of the centre of mass from the nose tip

Ixx t Moments of inertia about the rocket’s yaw axis

Iyy t Moments of inertia about the rocket’s pitch axis

Izz t Moments of inertia about the rocket’s roll axis

Cda t Thrust damping coefficient

CN Re, α, Ma Coefficient of normal force

CR Re, α, Ma Coefficient of aerodynamic roll torque

Xcp α Distance of the centre of pressure from the nose tip

Table 1: Parameters that are stored in the database for the rocket model.
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The list of parameters that has been dealt with is not exhaustive. These parameters provide

enough information for a simulator which assumes that the rocket is an axisymmetric rigid body.

However for more complex simulations more parameters may be required, for example when

simulating a non-axisymmetric rocket or modelling other phenomena that are neglected here

such as thrust misalignment.

Nevertheless simulations using the axisymmetric assumption and the parameters addressed

in this paper have been shown to be useful. Box et al [2009] used the methods laid out in this

paper to provide inputs to a rocket flight simulator which was used to simulate the flight of a

high powered rocket. The rocket was flown to an altitude of around 3.5 km before descending

under parachute. Instrumentation on board the rocket recorded some data on the flight and

the landing position was logged with a GPS receiver. Table 2 and Figure 5 from Box et al

[2009] show some comparison between simulated and measured data. Various flight statistics

are given in Table 2 and Figure 5 shows the flight path of the rocket ascent and parachute

descent as predicted by the simulator. The ellipses in the figure mark the areas of 1σ and 2σ

confidence in landing position. The diamond marker shows the recorded landing position of the

actual rocket.

This is a single result and not a comprehensive test of the simulator or the methodology

used to estimate the input parameters, but it is an encouraging result that suggests that future

investigation into the validity of this methodology may be worthwhile.

Simulated Measured

Launch tower clearance velocity 40ms−1 37ms−1

Maximum velocity 372.5ms−1 335ms−1

Apogee altitude 3539m 3594m

Time to apogee 24.5s 24.5s

Total flight time 170s 182s

Landing position [E, N ] [−135m, 936m] [−71m, 1042m]

Difference in landing positions 125m

Table 2: Comparison between simulated and measured flight statistics.
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Figure 5: Mean simulated flight path with 1σ and 2σ landing probabilities. The measured

landing position is marked by a diamond.

17



References

Barrowman. J.S. (1998) Calculating the centre of pressure of a model rocket TIR-33 in High

Power Rocketry

Barrowman. J.S. and Barrowman J.A. (1966) The Theoretical prediction of the centre of pres-

sure. NARAM-8, Technical paper

Box. S. Bishop. C.M. and Hunt. H. (2009) A Stochastic Six-Degree-of-Freedom Flight Simulator

for Passively Controlled High Power Rockets. In review at Journal of Aerospace Engineering

Cramer M.S. (2002) Foundations of fluid mechanics. Cambridge University Press

http://www.navier-stokes.net/nspfsim.htm
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